報 告 人:姚成建 教授
報告題目:On the basics of hypersymplectic structure and flow
報告時間:2025年5月10日(周六)下午17:30-18:30
報告地點:靜遠(yuǎn)樓1506學(xué)術(shù)報告廳
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報告人簡介:
姚成建,上??萍即髮W(xué)副教授,主要研究方向為微分幾何與數(shù)學(xué)物理。 相關(guān)成果發(fā)表在Duke Mathematical J., Mathematische Annalen以及Advances in Mathematics等國際知名雜志上。
報告摘要:
Hypersymplectic structure on a 4-manifold is a triple of symplectic forms such that any nontrivial linear combination is symplectic. The hypersymplectic flow is a natural geometric flow designed to deform one given hypersymplectic structure in its cohomology class isotopically to a hyperKahler structure. In this talk, we will review the very basics of hypersymplectic structure and the flow, and then present some long time existence and convergence results about the flow based on joint works with Joel Fine and Weiyong He.