報(bào) 告 人:侯倩倩 副教授
報(bào)告題目:Global solutions to the free boundary problem of a chemotaxis-Navier-Stokes system
報(bào)告時(shí)間:2023年6月28日(周三)上午10:00-12:00
報(bào)告地點(diǎn):騰訊會(huì)議:958-794-085
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報(bào)告人簡(jiǎn)介:
侯倩倩,哈爾濱工業(yè)大學(xué),數(shù)學(xué)研究院副教授。2018年博士畢業(yè)于香港理工大學(xué),數(shù)學(xué)與應(yīng)用數(shù)學(xué)系。主要從事趨化模型的數(shù)學(xué)研究,包括經(jīng)典趨化模型、趨化流體耦合模型解的適定性等。主持的項(xiàng)目國(guó)家自然科學(xué)基金青年基金、中國(guó)博士后特別資助。部分論文發(fā)表在JMPA,SIAM JMA, Nonlinearity,JDE等期刊。
報(bào)告摘要:
Chemotaxis is a common phenomenon in biology. Concerning the liquid living environment of micro-organisms, Tuval et al. proposed a chemotaxis-Navier-Stokes system to describe the dynamics of cell-fluid interactions based on experimental observations. In this talk, we investigate the global solvability of the chemotaxis-Navier-Stokes system on a three-dimensional moving domain of finite depth, bounded below by a rigid flat bottom and bounded above by the free surface. We establish the global existence and uniqueness of solutions near a constant state $(0,\hat{c},0)$, where $\hat{c}$ is the saturation value of the oxygen on the free surface.