報 告 人:原保全 教授
報告題目:Global regularity for the 2D micropolar Rayleigh-B\'{e}nard convection system with velocity zero dissipation and temperature critical dissipation
報告時間:2023年07月03日上午10:00-11:00
報告地點:靜遠樓1506學(xué)術(shù)報告廳
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報告人簡介:
原保全,博士,二級教授,博士生導(dǎo)師。河南省數(shù)學(xué)重點學(xué)科帶頭人,河南省高層次人才,河南省數(shù)學(xué)會常務(wù)理事,河南省杰出青年科學(xué)基金獲得者,河南省教育廳學(xué)術(shù)技術(shù)帶頭人,河南省中青年骨干教師。曾經(jīng)訪問美國紐約大學(xué)克朗數(shù)學(xué)研究所,俄克拉荷馬州立大學(xué)數(shù)學(xué)系,香港中文大學(xué)數(shù)學(xué)研究所,北京應(yīng)用物理與計算數(shù)學(xué)研究所等科研院所。主要研究偏微分方程和數(shù)學(xué)流體力學(xué)中的偏微分方程,主持完成6項國家自然科學(xué)基金項目,其中面上項目3項,主持完成河南省科技創(chuàng)新杰出青年項目、河南省高??萍紕?chuàng)新人才項目。在中國科學(xué)、數(shù)學(xué)學(xué)報、JDE、SIAM JMA等國內(nèi)外學(xué)術(shù)期刊發(fā)表論文70余篇。
報告摘要:
In this talk I will talk on the global regularity problem for the 2D micropolar Rayleigh-B\'{e}nard convection system with velocity zero dissipation, micro-rotation velocity Laplace dissipation and temperature critical dissipation. By introducing a combined quantity and using the technique of Littlewood-Paley decomposition, we will establish the global regularity result of solutions to this system.
Our result shows that, for the Euler-Rayleigh-B\'{e}nard convection system, the temperature critical dissipation can guarantee the global regularity of solutions in the 2 dimensional case.