報 告 人:惠昌常 教授
報告題目:On Tachikawa’s second conjecture
報告時間:2024年03月08日(周五)下午14:00-15:00
報告地點:靜遠(yuǎn)樓1508學(xué)術(shù)報告廳
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報告人簡介:
惠昌常,首都師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院特聘教授,博士生導(dǎo)師,教育部國家高層次人才獲得者。主要從事代數(shù)表示論的研究,在J. Rein Ang. Math., Adv. Math., Proc London Math. Soc., Math. Ann., Comm. Math. Phys,Trans Amer Math. Soc., J. Algebra, J. Pure Appl. Algebra等國際著名期刊發(fā)表論文90余篇?,F(xiàn)為J. Algebra和Archiv der Mathematik的編委,曾獲教育部科技進(jìn)步二等獎、德國“年輕杰出學(xué)者洪堡獎”。
報告摘要:
In the representation theory and homological algebra of finite-dimensional algebras, one of the most prominent conjectures is the long-standing and not yet solved Nakayama conjecture, saying that a finite-dimensional algebra over a field with infinite dominant dimension should be selfinjective. This conjecture is equivalent to the combination of two conjectures by Tachikawa, where the second conjecture states that an orthogonal module over a self-injective algebra should be projective. In this talk we consider Tachikawa’s second conjecture for symmetric algebras. We give a new formulation of this conjecture for symmetric algebras in terms of derived recollements of algebras. The talk presents parts of a joint work with H. X. Chen and M. Fang.